
Deobfuscation of Computer Virus Malware Code with

Value State Dependence Graph

Ivan Dychka1[0000-0002-3446-3076], Ihor Tereikovskyi1[0000-0003-4621-9668], Liudmyla

Tereikovska2[0000-0002-8830-0790], Volodymyr Pogorelov1[0000-0002-6100-1504] and Shynar

Mussiraliyeva3[0000-0001-5794-3649]

1 National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv,

Ukraine
2 Kyiv National University of Construction and Architecture, Kyiv, Ukraine

3 Al-Farabi Kazakh National University, Almaty, Kazakhstan

dychka@scs.ntu-kpi.kiev.ua, terejkowski@ukr.net,
tereikovskal@ukr.net, volodymyr.pogorelov@gmail.com,

mussiraliyevash@gmail.com

Abstract. This paper deals with improvement of malware protection efficiency.

The analysis of applied scientific research on malware protection development

has shown that improvement of the methods for deobfuscation of program code

being analyzed is one of the main means of increasing efficiency of malware

recognition. This paper demonstrates that the main drawback of the modern-day

deobfuscation methods is that they are insufficiently adapted to the formalized

presentation of the functional semantics of programs being tested. Based on the

research results, we suggest that theoretical solutions which have been tried out

in program code optimization procedures may be used for code deobfuscation.

In the course of the study, we have developed a program code deobfuscation

procedure utilizing a value state dependence graph. Utilization of the developed

procedure was found to enable presentation of the functional semantics of the

programs being tested in a graph form. As the result, identification of malware

based on its execution semantics became possible. The paper shows that further

research should focus on the development of a method for comparison of the

value state dependence graph of the program being tested with corresponding

graphs of security software and malware.

Keywords: deobfuscation, value state dependence graph, malware, code

optimization.

1 Introduction

The results of research in the field of computer system security [12, 15] indicate

that malware protection (MW) has been one of the most important and relevant

problems in the field of data security over the last decade. The need to enhance

malware protection is confirmed by a great number of well-known examples of

computer system infection, which leads not only to the loss of functionality but also to

the unauthorised use of the infected systems. For example, virus-infected computer

mailto:terejkowski@ukr.net
mailto:tereikovskal@ukr.net
mailto:volodymyr.pogorelov@gmail.com

systems can send spam-messages without authorisation or participate in distributed

DDoS attacks. The threat becomes even greater in the light of mainstreamification of

web-oriented social networks which require the installation of potentially dangerous

specialised software on the client computer to use them. Another aggravating factor is

the possibility of computer system infection during a scheduled software update.

Along with that, the analysis of applied scientific research in the field of

protection systems development [1–4, 12–15] shows that the main way of increasing

their efficiency is to increase malware recognition accuracy. For this, most antivirus

protection suites employ cutting-edge solutions in the field of data mining [12, 14,

15]. However, the use of these solutions is seriously complicated because the modern

malware is created with extensive use of different techniques of program code

distortion, making it impossible to form an input data set for the recognition system.

One of the most common distortion techniques is program code obfuscation. By

obfuscation, we mean translation of program code to a form, which preserves its

functionality but complicates its analysis, understanding of the operation algorithm

and modification in the event of decompilation. Therefore, this paper deals with the

problematic of obfuscated program recognition for malware recognition.

2 Analysis of literature sources in the field of research

According to [1–4, 9, 10, 12–15], obfuscation is one of the most common

techniques of program code protection in legitimate software and is used to prevent its

illegal copying. Thus, the existence of obfuscated program code itself is not a

sufficient indication of malware. Consequently, it is necessary to develop a

deobfuscation procedure which must be executed before the program code is

submitted to the recognition system. The main task of this procedure is to translate

program code so that it can be examined and its functionality analysed. It is thereby

concluded that it is reasonable to adapt the deobfuscation procedure to the common

techniques of program code obfuscation: minimisation, meshing, and sealing. It is

also determined that the following techniques are mainly used for program code

obfuscation in web-oriented software:

 Replacement of carriage return characters with line feed characters.

 Replacement of multiple space characters with one space character.

 Replacement of multiple line feed characters with a line feed character.

 Replacement of comments with a line feed character or space characters.

 Declaration of a set of used variables.

 Call of undefined functions in conditional statements with false conditions.

 Encryption of names of variables and functions.

 Division of encrypted program code into visible and hidden parts.

 JavaScript script packaging into CSS.

In addition, development of deobfuscation methods is declared. For example, the

method of minimised JavaScript code deobfuscation includes the following stages:

1. Detection of existing obfuscated JavaScript program code. For this purpose,

representative examples of minimiser obfuscators outputs will be used.

2. The start of minimised code review. For this, the minimised code is loaded into

a string variable.

3. Division of the script into separate lines. For this, a line feed character is added

after each semicolon in the obtained string variables.

4. Identification of names of the JavaScript functions used. For this, each line

obtained on the previous stage is scanned. The declared variables found in the

obfuscated code are passed to the alert() function to obtain the real names of

JavaScript functions.

5. Security analysis of the functions found. It is proposed to use the results given

in [10, 12, 15, 16] for this purpose.

The program code obfuscated using the method of executive process meshing, was

found to be the most difficult to analyse. The one obfuscated with other methods is

quite easy to interpret.

In addition, [1, 13] present the analysis of the main functionality of existing

software designed for obfuscation/deobfuscation of web-oriented program code. It is

determined that limited functionality of available deobfuscation instruments is

primarily due to the imperfection of their mathematical support.

Talking about [1–4, 10, 12–15], one can claim that the result of use of the declared

deobfuscation methods fails to reflect the objective of the obfuscated program

execution. In other words, it does not reflect the formalised description of the program

code execution sequence, which in its turn substantially complicated the analysis of

its functional semantics. Consequently, the recognition of destructive properties

indicative of malware becomes more complicated too.

 [3] shows that obfuscation procedures used to hide malicious code elements

employ the same techniques as those designed to protect program code against illegal

copying.

Based on the analysis performed, we can claim that the main drawback of the

deobfuscation methods available is that they are insufficiently adapted to the

formalised presentation of functional semantics of the programs tested. In addition, a

specific analogy is pointed out between the procedure of program code deobfuscation

and the well-studied procedure for translation of high-level program code into

executable code [11]. This suggests a possibility of correcting the mentioned

drawback of the well-known deobfuscation methods by means of integrating

theoretical solutions used in translator development into them. One of such solutions

involves the presentation of program code as a value state dependence graph, which

enables formalisation of program execution semantics.

Therefore, the objective of this study is to develop a program code deobfuscation

approach utilising a value state dependence graph.

3 Formalization of obfuscation procedure

The logic of obfuscation procedure is to exclude most of the obvious connections

from the program code, i.e. to transform the code so as to make investigation and

modification of the obfuscated program more complicated and expensive than

construction of a new algorithm [1–4]. At the same time, obfuscation procedure must

be performed automatically, at a minimum estimated cost.

To provide an accurate definition of obfuscation process, we need to introduce the

following terms: initial program code 1PR , transformation process, ()TR and the

set of algorithms nPRPR 2...21 arising as a result of transformation :

,

In this case, transformation function defines the obfuscation procedure if the

following requirements are met: program code nPRPR 2...21 runs in the same way

as program code 1PR , program code nPRPR 2...21 is substantially different from

program code 1PR , application of the available reverse engineering algorithms on

the program code nPRPR 2...21 fails, application of the available algorithms for

program code nPRPR 2...21 detransformation into program code 1PR fails, each

transformation procedure application on program code 1PR generates new program

code nPRPR 2...21 with unpredictable structure specifics.

Let us consider the use of the procedure developed and formalise the main types

of obfuscation algorithms. We should note that such algorithms are classified into two

main groups according to [4, 5]. General (abstract) obfuscation algorithms are those,

which are not associated with the specifics of programming language and can be

applied even to the assembler code. It is considered more efficient to build the

obfuscator based on the abstract algorithm of the procedure which uses all advantages

of the specific software code [1–4].

Of abstract obfuscation algorithms, the Collberg's algorithm is the most generic

one. While studying the types of obfuscation algorithms, it is reasonable to start with

this general scheme and then analyse the methods which can be used during its

application.

Execution of Collberg's algorithm can be conventionally divided into four main

stages (Fig. 1):

 Loading of program code elements 1PR

 Loading of libraries

 Cyclic execution of transformation procedure ()TR by isolating a code

segment, which is repeated until the required level is reached or system resource is

exceeded

 Program code generation nPR2

Fig. 1. Pattern of program code obfuscation based on Collberg’s algorithm

The input of Collberg's algorithm thus includes:

 Source program code elements 1PR (C – Code)

 Standard libraries used in the program code 1PR

 Methods of program code transformation (T – Transformation)

 The segment of the program code 1PR (S – Segment) subject to

transformation

 A set of functions that define efficiency (E – Efficiency) of the transformation

methods

 A set of functions defining the importance of code segment S

 Maximum acceptable cost of system resources that can be used for obfuscation

(A – Accept Cost)

 A parameter indicating the required level of program code segment

obfuscation (R – Require Obfuscation)

 Collberg's algorithm is a general pattern of the obfuscation process, while

specialised algorithms are defined by obfuscation methods, which can be classified as

follows: lexical obfuscation, data obfuscation, control flow obfuscation.

 Lexical obfuscation is the simplest type of software protection. It involves code

restructuring by deletion or replacement of the comments, deletion of the offsets that

are helpful for visual scanning of code, replacement of the identifier (variable, array,

function, procedure) names with random character sequences, as well as algorithm

block repositioning. Lexical obfuscation enables the transformation of the program

code into a form a programmer cannot analyse quickly and at a moderate cost of

hardware resources. However, this method grants extremely low resistance against

deobfuscation algorithms.

 Data obfuscation, which involves the transformation of data structures, belongs to

the group of more complex methods. Obfuscation methods can be divided into three

subgroups:

The description of obfuscation subgroups shows that this group of methods

requires much more hardware resources, but is more resistant to deobfuscation.

 Control flow obfuscation is to obfuscate the sequence of program code execution.

Algorithms of this method are based on the use of opaque predicates, i.e. predicates

 the results of which are unknown. In this case, a predicate that always returns

“true” is designated as , a predicate that always returns “false” is designated as

, and a predicate that can return either is designated as .

Opaque predicates can be divided into: local, global, interprocedural.

The efficiency of control flow obfuscation algorithms primarily depends on

opaque predicates, which must be sufficiently resistant and flexible in use. In terms of

hardware requirements, other important parameters are the time of predicate

execution and the number of operations performed during its use. Predicate functions,

which aim to increase resistance to the static analysis-based deobfuscation algorithms,

should be very similar to software functions.

The control flow obfuscation also includes the methods for computational

obfuscation. The most efficient algorithm for computational obfuscation is known as

the algorithm of cycle condition extension. Just like in the previous case, it is based

on an opaque predicate that simulates influence on the number of cycle code

executions. Another efficient pattern is the algorithm of library call elimination. If the

software uses standard library functions, the operation principle of these program

elements will be known, which can help in reverse engineering. Therefore, names of

functions from standard libraries are also transformed in the course of obfuscation.

One variety of this approach is to use a proprietary version of libraries (built through

the transformation of standard libraries) in software. This technique does not affect

the program execution time but increases program size significantly.

4 Deobfuscation procedure utilizing a value state dependence

graph

Having analysed the available methods of computer virus code deobfuscation, we

can claim that deobfuscation procedure is in many ways similar to the procedure of

program code optimisation because it often involves incorporation of unnecessary

operations and code structure distortion, that does not affect the functionality of the

program but hinder the investigation of its operation algorithms. Like deobfuscation,

optimisation is aimed at eliminating unnecessary nodes, therefore both can be

assigned to the same type of processes on the technical level.

As an internal representation for deobfuscation process we propose to use the

Value State Dependence Graph. This graph does not use assignments; the control

flow is used only to determine the corresponding operation values, and dependencies

are explicit, as well as the conditions for their existence.

In the terms of graph theory, a value state dependence graph (VSDG) can be

defined as an oriented designated hierarchical graph , which

consists of functional elements.

These elements include the following:

 Transitions T are the nodes that correspond to operations.

 Places S are the nodes that correspond to the results of operations.

 Edges E the are operation result dependencies.

 Labelling function l corresponds to each branching operation.

 Arguments 0S indicate the places wherein the function input arguments are

located.

 Results
S indicate the places wherein function output is located.

Each place and each graph edge are typeable by value or state. Edge type is

defined by endpoints: The state edge is an edge with a state place being its end-point,

and the value edge is the one with a value place being its end-point. Transitions

represent VSDG operations effected by the labelling function via the corresponding

operator. Transition ’s input is a place linked to the branch with an edge. A

transition may be considered a place consumer.

In a similar way, a place is called transition ’s output is a place with an edge

leading from the transition thereto. In this case, a transition may be considered a place

producer. A set of transition ’s inputs is called transition operands or simply inputs,

while a set of transition ’s outputs is called transition results or outputs .

While constructing a VSDG for deobfuscation of potentially malicious software

(SW) and code optimisation, the following requirements must be fulfilled:

 Acyclicity: VSDG must not use graph theoretical codes

 Node arity: each place must have a unique producer (i.e. a distinct edge

STE must exist)

 Linear use of states: states must act as consumers not more than once

It is important to note, that VSDG edges must be of the same type, and nodes

are described by the following set of simultaneous equations:

,

Input nodes are subject to additional conditions:

,

Similarly, the following conditions are true for output nodes:

.

Nodes, which are used in VSDG, can be divided into three types:

 Calculation nodes

 -nodes

 Complex nodes

Calculation nodes simulate simple low-level operations. In turn, they can be

subdivided into the following types:

 Value nodes (contain input and output values without additional action)

 Constant nodes (similar to value nodes, but don't have inputs)

State nodes have mixed inputs and outputs and represent operations as additional

actions, such as load or store.

-nodes are used to express conditional behaviour in VSDG; they perform

multiplexing between two sets of operands and , which act as predicate functions,

based on input predicate . Operands of both sets, as well as the result of a -node

execution, shall be of the same type to perform this operation. Characteristically, -

nodes are the only type of nodes in VSDG that demonstrate the inconsistent

behaviour.

Complex nodes are also called regions. A region contains a distinct graph and

can be substituted with this graph. Characteristically, this graph can contain its own

regions; therefore regions, being a separate type of nodes in VSDG, form hierarchic

structures. During code deobfuscation and optimisation, regions may transfer between

external and internal regions under certain conditions. However, in this case nesting

the property should be kept in mind. A nesting property places a restriction on edges:

they must connect nodes only within one region or with a child region. A separate

type of complex nodes is nodes. nodes are used on VSDG only for cycles

simulation.

It should be pointed out, that a VSDG, to a certain extent, reflects semantic

properties of the program being tested, which are related to the use of computational

resources of the computer system. Owing to this capability, application of VSDG is

promising for semantic analysis of obfuscated software based on the comparison of

the tested program's graph with the corresponding graphs of malware and security

software. The development of a relevant comparison method will be tackled in further

studies.

5 Conclusion

The analysis of applied scientific research on malware protection development has

shown that improvement of the methods for deobfuscation of program code being

analysed is one of the main means of increasing efficiency of malware recognition.

This paper demonstrates that the main drawback of the modern-day deobfuscation

methods is that they are insufficiently adapted to the formalised presentation of the

functional semantics of programs being tested. An analogy between the procedures

for deobfuscation and program code optimisation has also been identified. Based on

the research results, we suggest that theoretical solutions which have been tried out in

program code optimisation procedures may be used for code deobfuscation. In the

course of the study, we have developed a program code deobfuscation procedure

utilising a value state dependence graph. Utilisation of the developed procedure was

found to enable presentation of the functional semantics of the programs being tested

in a graph form. As the result, identification of malware based on its execution

semantics became possible. The paper shows that further research should focus on the

development of a method for comparison of the value state dependence graph of the

program being tested with corresponding graphs of security software and malware.

References

1. Yadegari Babak N. (2016), Automatic deobfuscation and reverse engineering

of obfuscated code, PhD Thesis, The University of Arizona, Tucson, USA,

22.09.2016, 200 p.

2. Xu W., Zhang F., Zhu S. (2002), The power of obfuscation techniques in

malicious JavaScript code: A measurement study, 7th International

Conference. Malicious and Unwanted Software, 2012, 8 p., DOI: 10.1109.

3. Ming, J., Xin, Z., Lan, P., etc. (2017), Impeding behaviour-based malware

analysis via replacement attacks to malware specifications, Springer

[Electronic], Sept. 2017, pp. 1–13, available at:

https://link.springer.com/article/10.1007/s11416-016-0281-3.

4. Chad Robertson (2012), PDF Obfuscation, A Primer [Electronic], SANS

Institute Reading Room site, No. 1, 2012, pp. 1–38, available at:

https://www.bing.com.

5. Singh A. (2009), Identifying malicious code through reverse engineering,

Springer, New York, 2009, 196 p.

6. Udupa Sh.K., Debray S.K., Madou M. (2005), Deobfuscation: Reverse

Engineering Obfuscated Code, 12th Working Conference on Reverse

Engineering (WCRE'05), 2005, No. 13, pp. 1–10.

7. Lawrence A.C. (2008), Optimising compilation with the value state

dependence graph, University of Cambridge, Great Britain, 183 p.

(Cambridge CB3 0FD)

8. Reissmann Nico (2012), Utilising the Value State Dependence Graph for

Haskell, University of Gothenburg, Göteborg, Sweden, May 2012, 68 p.

9. Zhengbing H., Dychka I.A., Onai M., Bartkoviak A. (2016). The Analysis

and Investigation of Multiplicative Inverse Searching Methods in the Ring of

Integers Modulo M, Intelligent Systems and Applications, 2016, 11, pp. 9-

18.

10. Zhengbing H., Tereykovskiy I., Tereykovska L., Pogorelov V. (2017),

Determination of Structural Parameters of Multilayer Perceptron Designed to

Estimate Parameters of Technical Systems, Intelligent Systems and

Applications, 2017, 10, pp. 57-62.

11. Pogorelov V.V., Marchenko O.I. (2016), Ohlyad vnutrishnikh form

predstavlennya prohramy dlya translyatsiyi z protsedurnykh mov

prohramuvannya u funktsional'ni movy [Review of internal program

presentation forms for translation from procedural programming languages

to functional languages], Scientific Magazine “Computer Integrated

Technologies: Education, Science, Production”, 2016, No. 23, pp. 85-92.

12. Kushnarev M. V. (2016), Metody i modeli raspoznavaniya vredonosnyh

programm na osnove iskusstvennyh immunnyh sistem [Methods and models

of malware recognition based on artificial immune systems], Thesis of

Candidate of Technical Sciences, Specialty 05.13.23 – Atrificial intelligence

systems and tools, Kharkiv, Ukraine, 2016, 164 p.

13. Unhul V. V. (2016), Analysis and development of methods of scripts

deobfuscation to identify threats to information computer sustainability,

International Scientific Magazine, vol. 2, No. 6, 2016, pp. 19-27.

14. Petrov S.A. (2013), Building adaptive security system based on multi-agent

system, Materials of the second international research and practice

conference, Westwood, Canada, vol. 2, 2013, pp. 196-201.

15. Z. Hu, S. Gnatyuk, O. Koval, V. Gnatyuk, S. Bondarovets, «Anomaly

Detection System in Secure Cloud Computing Environment», International

Journal of Computer Network and Information Security, Vol. 9, № 4, рр. 10-

21, 2017.

16. Z. Hu, V. Gnatyuk, V. Sydorenko, R. Odarchenko, S. Gnatyuk, «Method for

Cyberincidents Network-Centric Monitoring in Critical Information

Infrastructure», International Journal of Computer Network and Information

Security, Vol. 9, № 6, рр. 30-43, 2017.

